Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,7-Dimethoxy-3-(4-methoxyphenyl)-4H-chromen-4-one

Huan-Qiu Li, Zhu-Ping Xiao, Yue Han, Rui-Qin Fang and Hai-Liang Zhu*

School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: hailiang_zhu@163.com

Received 24 August 2007; accepted 24 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.145; data-to-parameter ratio = 13.5.

In the genistein-related title molecule, $C_{18}H_{16}O_5$, the dihedral angle between the two benzene rings is $59.25 (6)^{\circ}$.

Related literature

For reference structural data, see: Allen et al. (1987). For background, see: Kim et al. (2004); Li et al. (2006).

Experimental

Crystal data

$C_{18}H_{16}O_5$	$\gamma = 65.953 \ (2)^{\circ}$
$M_r = 312.31$	V = 754.83 (16) Å ³
Triclinic, P1	Z = 2
a = 8.5649 (10) Å	Mo $K\alpha$ radiation
b = 10.3212 (13) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 10.5563 (13) Å	T = 298 (2) K
$\alpha = 63.783 \ (2)^{\circ}$	$0.20 \times 0.15 \times 0.15$ mm
$\beta = 71.937 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2001) $T_{\min} = 0.980, T_{\max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.145$ S = 1.032855 reflections

2855 independent reflections 2134 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$

4140 measured reflections

211 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXL97.

The authors acknowledge the support of the Measurement Foundation from Nanjing University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2521).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Kim, Y. W., Hackett, J. C. & Brueggemeier, R. W. (2004). J. Med. Chem. 47, 4032-4040.

Li, H.-Q., Ge, H.-M., Chen, Y.-X., Xu, C., Shi, L., Ding, H., Zhu, H.-L. & Tan, R. X. (2006). Chem. Biodiver. 3, 463-472.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3923 [doi:10.1107/S1600536807041773]

5,7-Dimethoxy-3-(4-methoxyphenyl)-4H-chromen-4-one

H.-Q. Li, Z.-P. Xiao, Y. Han, R.-Q. Fang and H.-L. Zhu

Comment

Genistein derivatives show various biological activitites (Kim *et al.*, 2004; Li *et al.*, 2006). In the genistein-related title compound, (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The dihedral angle between the least-squares planes of the two benzene rings (C2—C7 and C1—C15) is 59.25 (6) °. The crystal packing is stabilized by van der Waals forces.

Experimental

Genistein (0.41 g, 1.5 mmol), iodomethane (0.62 ml, 6 mmol) and potassium carbonate (0.14 g, 1 mmol) in 50 ml of dry acetone were sonicated. After the completion of reaction, the mixture was cooled to room temperature and filtered. The filtrate was distilled to give a yellow solid, which was washed with aqueous saturated sodium bicarbonate twice. The solid was dissolved in acetone (15 ml) and stirred for about 10 min to give a clear solution. After keeping the solution in air for 10 d, colourless blocks of (I) were formed at the bottom of the vessel on slow evaporation of the solvent. They were collected, washed three times with acetone and dried in a vacuum desiccator using $CaCl_2$ (yield = 88%).

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms).

5,7-Dimethoxy-3-(4-methoxyphenyl)-4H-chromen-4-one

Crystal data	
$C_{18}H_{16}O_5$	Z = 2
$M_r = 312.31$	$F_{000} = 328$
Triclinic, P1	$D_{\rm x} = 1.374 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073 \text{ Å}$
a = 8.5649 (10) Å	Cell parameters from 1220 reflections

b = 10.3212 (13) Å c = 10.5563 (13) Å $\alpha = 63.783 (2)^{\circ}$ $\beta = 71.937 (2)^{\circ}$ $\gamma = 65.953 (2)^{\circ}$ $V = 754.83 (16) \text{ Å}^{3}$

Data collection

2855 independent reflections
2134 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.016$
$\theta_{\text{max}} = 26.0^{\circ}$
$\theta_{\min} = 2.2^{\circ}$
$h = -8 \rightarrow 10$
$k = -12 \rightarrow 12$
$l = -13 \rightarrow 12$

 $\theta = 2.5 - 25.5^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 298 (2) K

Block, colorless

 $0.20\times0.15\times0.15~mm$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_o^2) + (0.0767P)^2 + 0.0778P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2855 reflections	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
211 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
Duine and a site 1 and in a structure incoming this of	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.4469 (2)	0.3920 (2)	0.7581 (2)	0.0375 (5)
C2	0.4112 (2)	0.2474 (2)	0.8110 (2)	0.0338 (4)
C3	0.2547 (2)	0.2205 (2)	0.8986 (2)	0.0365 (5)
C4	0.2282 (2)	0.0844 (2)	0.9375 (2)	0.0408 (5)
H4	0.1239	0.0702	0.9921	0.049*
C5	0.3565 (3)	-0.0329 (2)	0.8960 (2)	0.0389 (5)
C6	0.5120 (3)	-0.0150 (2)	0.8167 (2)	0.0411 (5)
Н6	0.5987	-0.0931	0.7900	0.049*
C7	0.5355 (2)	0.1237 (2)	0.7778 (2)	0.0359 (4)
C8	0.7358 (3)	0.2583 (2)	0.6647 (2)	0.0485 (6)
H8	0.8475	0.2585	0.6183	0.058*
С9	0.6278 (2)	0.3838 (2)	0.6895 (2)	0.0381 (5)
C10	0.6923 (2)	0.5133 (2)	0.6466 (2)	0.0376 (5)
C11	0.8407 (3)	0.4916 (2)	0.6911 (2)	0.0493 (5)
H11	0.8984	0.3953	0.7502	0.059*
C12	0.9041 (3)	0.6105 (2)	0.6491 (3)	0.0497 (6)
H12	1.0027	0.5941	0.6810	0.060*
C13	0.8212 (2)	0.7534 (2)	0.5600 (2)	0.0393 (5)
C14	0.6747 (2)	0.7777 (2)	0.5130 (2)	0.0431 (5)
H14	0.6192	0.8736	0.4517	0.052*
C15	0.6110 (2)	0.6575 (2)	0.5581 (2)	0.0422 (5)
H15	0.5108	0.6748	0.5278	0.051*
C16	-0.0023 (3)	0.3017 (3)	1.0530 (3)	0.0615 (7)
H16A	-0.0738	0.2767	1.0187	0.092*
H16B	-0.0698	0.3891	1.0792	0.092*
H16C	0.0419	0.2170	1.1350	0.092*
C17	0.4422 (3)	-0.2884 (2)	0.9073 (3)	0.0600 (6)
H17A	0.4685	-0.2596	0.8052	0.090*
H17B	0.3976	-0.3725	0.9482	0.090*
H17C	0.5455	-0.3178	0.9445	0.090*
C18	0.8265 (3)	1.0087 (3)	0.4181 (3)	0.0612 (7)
H18A	0.8342	0.9953	0.3318	0.092*
H18B	0.8923	1.0733	0.3992	0.092*
H18C	0.7076	1.0548	0.4520	0.092*
01	0.33992 (18)	0.51091 (16)	0.76789 (19)	0.0600 (5)
O2	0.13918 (17)	0.33485 (15)	0.94267 (16)	0.0493 (4)
O3	0.31532 (18)	-0.16221 (15)	0.94307 (17)	0.0519 (4)
O4	0.69615 (17)	0.13026 (15)	0.70162 (17)	0.0510 (4)
O5	0.89364 (17)	0.86501 (16)	0.52360 (17)	0.0500 (4)
	2			

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0365 (10)	0.0374 (11)	0.0389 (11)	-0.0124 (9)	0.0012 (8)	-0.0184 (9)

supplementary materials

$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.0336 (10)	0.0345 (10)	0.0344 (10)	-0.0110 (8)	-0.0029 (8)	-0.0150 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.0348 (10)	0.0345 (10)	0.0413 (11)	-0.0104 (8)	-0.0028 (8)	-0.0175 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.0365 (11)	0.0416 (11)	0.0472 (12)	-0.0169 (9)	-0.0002 (9)	-0.0186 (9)
C6 $0.0444 (12)$ $0.0330 (10)$ $0.0446 (12)$ $-0.0072 (9)$ $-0.0060 (9)$ $-0.0183 (9)$ C7 $0.0349 (10)$ $0.0359 (10)$ $0.0353 (10)$ $-0.0110 (8)$ $-0.0012 (8)$ $-0.0146 (12)$ C8 $0.0367 (11)$ $0.0445 (12)$ $0.0607 (14)$ $-0.0183 (9)$ $0.0093 (10)$ $-0.0223 (12)$ C9 $0.0361 (10)$ $0.0395 (11)$ $0.0377 (11)$ $-0.0145 (8)$ $-0.0006 (8)$ $-0.0145 (8)$ C10 $0.0329 (10)$ $0.0422 (11)$ $0.0377 (11)$ $-0.0148 (8)$ $0.0024 (8)$ $-0.0171 (12)$ C11 $0.0435 (12)$ $0.0431 (12)$ $0.0543 (13)$ $-0.0127 (9)$ $-0.0129 (10)$ $-0.0092 (12)$ C12 $0.0380 (11)$ $0.0512 (13)$ $0.0626 (14)$ $-0.0154 (10)$ $-0.0136 (10)$ $-0.0180 (13)$ C13 $0.0331 (10)$ $0.0434 (11)$ $0.0434 (11)$ $-0.0174 (9)$ $0.0033 (8)$ $-0.0180 (12)$ C14 $0.0380 (11)$ $0.0477 (11)$ $0.0451 (12)$ $-0.0159 (9)$ $-0.0067 (9)$ $-0.0099 (12) (12) -0.0149 (12)$ C16 $0.0345 (10)$ $0.0483 (12)$ $0.0445 (12)$ $-0.0159 (9)$ $-0.0065 (9)$ $-0.0149 (12) -0.0411 (12) -0.0156 (11) -0.0080 (13) -0.0253 (12) -0.0774 (17) -0.0156 (11) -0.0080 (13) -0.0253 (12) -0.0774 (17) -0.0156 (11) -0.0104 (13) -0.0148 (10) -0.0124 (12) -0.0411 (12) -0.0411 (13) -0.0148 (13) -0.0148 (13) -0.0148 (10) -0.0125 (13) -0.0157 (17) -0.0031 (7) -0.0255 (13) -0.0177 (7) -0.0184 (8) -0.0344 (12) -0.0397 (8) -0.0420 (8) -0.0658 (10) -0.0195 (7) -0.0031 (7) -0.0255 (10) -0.0255 (7) -0.0031 (7) -0.0255 (13) -0.0177 (7) -0.0031 (7) -0.0255 (10) -0.0423 (8) -0.0420 (8) $	C5	0.0462 (11)	0.0334 (10)	0.0402 (11)	-0.0154 (9)	-0.0079 (9)	-0.0128 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.0444 (12)	0.0330 (10)	0.0446 (12)	-0.0072 (9)	-0.0060 (9)	-0.0183 (9)
C8 $0.0367 (11)$ $0.0445 (12)$ $0.0607 (14)$ $-0.0183 (9)$ $0.0093 (10)$ $-0.0223 (10)$ C9 $0.0361 (10)$ $0.0395 (11)$ $0.0377 (11)$ $-0.0145 (8)$ $-0.0006 (8)$ $-0.0145 (8)$ C10 $0.0329 (10)$ $0.0422 (11)$ $0.0377 (11)$ $-0.0148 (8)$ $0.0024 (8)$ $-0.0171 (8)$ C11 $0.0435 (12)$ $0.0431 (12)$ $0.0543 (13)$ $-0.0127 (9)$ $-0.0129 (10)$ $-0.0092 (10)$ C12 $0.0380 (11)$ $0.0512 (13)$ $0.0626 (14)$ $-0.0154 (10)$ $-0.0136 (10)$ $-0.0180 (10)$ C13 $0.0331 (10)$ $0.0434 (11)$ $0.0434 (11)$ $-0.0174 (9)$ $0.0033 (8)$ $-0.0188 (10)$ C14 $0.0380 (11)$ $0.0407 (11)$ $0.0451 (12)$ $-0.0137 (9)$ $-0.0067 (9)$ $-0.0099 (15)$ C15 $0.0345 (10)$ $0.0483 (12)$ $0.0445 (12)$ $-0.0159 (9)$ $-0.0065 (9)$ $-0.0149 (12)$ C16 $0.0504 (13)$ $0.0597 (15)$ $0.0775 (17)$ $-0.0275 (11)$ $0.0240 (12)$ $-0.0114 (13)$ C17 $0.0688 (16)$ $0.0355 (12)$ $0.0774 (17)$ $-0.0156 (11)$ $-0.0080 (13)$ $-0.0233 (10)$ C18 $0.0598 (14)$ $0.0489 (13)$ $0.0766 (18)$ $-0.0280 (11)$ $-0.0104 (13)$ $-0.0148 (10)$ O1 $0.0452 (9)$ $0.0401 (8)$ $0.0895 (13)$ $-0.0177 (7)$ $0.0184 (8)$ $-0.0344 (10)$ O2 $0.0397 (8)$ $0.0420 (8)$ $0.0683 (10)$ $-0.0195 (7)$ $-0.0031 (7)$ $-0.0225 (10)$ O3 $0.0555 (9)$	C7	0.0349 (10)	0.0359 (10)	0.0353 (10)	-0.0110 (8)	-0.0012 (8)	-0.0146 (8)
C9 $0.0361(10)$ $0.0395(11)$ $0.0377(11)$ $-0.0145(8)$ $-0.0006(8)$ $-0.0145(8)$ C10 $0.0329(10)$ $0.0422(11)$ $0.0377(11)$ $-0.0148(8)$ $0.0024(8)$ $-0.0171(6)$ C11 $0.0435(12)$ $0.0431(12)$ $0.0543(13)$ $-0.0127(9)$ $-0.0129(10)$ $-0.0092(10)$ C12 $0.0380(11)$ $0.0512(13)$ $0.0626(14)$ $-0.0154(10)$ $-0.0136(10)$ $-0.0180(10)$ C13 $0.0331(10)$ $0.0434(11)$ $0.0434(11)$ $-0.0174(9)$ $0.0033(8)$ $-0.0188(10)$ C14 $0.0380(11)$ $0.0407(11)$ $0.0445(12)$ $-0.0137(9)$ $-0.0067(9)$ $-0.0099(10)$ C15 $0.0345(10)$ $0.0483(12)$ $0.0445(12)$ $-0.0159(9)$ $-0.0065(9)$ $-0.0149(12)$ C16 $0.0504(13)$ $0.0597(15)$ $0.0775(17)$ $-0.0275(11)$ $0.0240(12)$ $-0.0411(10)$ C17 $0.0688(16)$ $0.0355(12)$ $0.0774(17)$ $-0.0156(11)$ $-0.0080(13)$ $-0.0233(10)$ C18 $0.0598(14)$ $0.0489(13)$ $0.0766(18)$ $-0.0280(11)$ $-0.0164(13)$ $-0.0344(10)$ O1 $0.0452(9)$ $0.0401(8)$ $0.0895(13)$ $-0.0177(7)$ $0.0184(8)$ $-0.0344(10)$ O2 $0.0397(8)$ $0.0420(8)$ $0.0658(10)$ $-0.0195(7)$ $-0.0031(7)$ $-0.0225(7)$ O3 $0.0555(9)$ $0.0361(8)$ $0.0638(10)$ $-0.0142(6)$ $0.0141(7)$ $-0.0225(7)$ O4 $0.0408(8)$ $0.0418(8)$ $0.0665(10)$ $-0.0205(7)$ $-0.0061(7)$	C8	0.0367 (11)	0.0445 (12)	0.0607 (14)	-0.0183 (9)	0.0093 (10)	-0.0223 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.0361 (10)	0.0395 (11)	0.0377 (11)	-0.0145 (8)	-0.0006 (8)	-0.0145 (9)
C11 $0.0435(12)$ $0.0431(12)$ $0.0543(13)$ $-0.0127(9)$ $-0.0129(10)$ $-0.0092(0)$ C12 $0.0380(11)$ $0.0512(13)$ $0.0626(14)$ $-0.0154(10)$ $-0.0136(10)$ $-0.0180(0)$ C13 $0.0331(10)$ $0.0434(11)$ $0.0434(11)$ $-0.0174(9)$ $0.0033(8)$ $-0.0188(0)$ C14 $0.0380(11)$ $0.0407(11)$ $0.0451(12)$ $-0.0137(9)$ $-0.0067(9)$ $-0.0099(0)$ C15 $0.0345(10)$ $0.0483(12)$ $0.0445(12)$ $-0.0159(9)$ $-0.0065(9)$ $-0.0149(0)$ C16 $0.0504(13)$ $0.0597(15)$ $0.0775(17)$ $-0.0275(11)$ $0.0240(12)$ $-0.0411(0)$ C17 $0.0688(16)$ $0.0355(12)$ $0.0774(17)$ $-0.0156(11)$ $-0.0080(13)$ $-0.0253(0)$ C18 $0.0598(14)$ $0.0489(13)$ $0.0766(18)$ $-0.0280(11)$ $-0.0104(13)$ $-0.0148(0)$ O1 $0.0452(9)$ $0.0401(8)$ $0.0895(13)$ $-0.0177(7)$ $0.0184(8)$ $-0.0346(0)$ O2 $0.0397(8)$ $0.0420(8)$ $0.0658(10)$ $-0.0195(7)$ $-0.0031(7)$ $-0.0225(7)$ O4 $0.0408(8)$ $0.0418(8)$ $0.0638(10)$ $-0.0142(6)$ $0.0141(7)$ $-0.0275(7)$ O5 $0.0423(8)$ $0.0452(8)$ $0.0665(10)$ $-0.0205(7)$ $-0.0061(7)$ $-0.0194(0)$	C10	0.0329 (10)	0.0422 (11)	0.0377 (11)	-0.0148 (8)	0.0024 (8)	-0.0171 (9)
C12 $0.0380(11)$ $0.0512(13)$ $0.0626(14)$ $-0.0154(10)$ $-0.0136(10)$ $-0.0180(10)$ C13 $0.0331(10)$ $0.0434(11)$ $0.0434(11)$ $-0.0174(9)$ $0.0033(8)$ $-0.0188(10)$ C14 $0.0380(11)$ $0.0407(11)$ $0.0451(12)$ $-0.0137(9)$ $-0.0067(9)$ $-0.0099(10)$ C15 $0.0345(10)$ $0.0483(12)$ $0.0445(12)$ $-0.0159(9)$ $-0.0065(9)$ $-0.0149(10)$ C16 $0.0504(13)$ $0.0597(15)$ $0.0775(17)$ $-0.0275(11)$ $0.0240(12)$ $-0.0411(10)$ C17 $0.0688(16)$ $0.0355(12)$ $0.0774(17)$ $-0.0156(11)$ $-0.0080(13)$ $-0.0223(10)$ C18 $0.0598(14)$ $0.0489(13)$ $0.0766(18)$ $-0.0177(7)$ $0.0184(8)$ $-0.0344(10)$ O1 $0.0452(9)$ $0.0401(8)$ $0.0895(13)$ $-0.0177(7)$ $0.0184(8)$ $-0.0344(10)$ O2 $0.0397(8)$ $0.0420(8)$ $0.0658(10)$ $-0.0195(7)$ $-0.0031(7)$ $-0.0225(7)$ O4 $0.0408(8)$ $0.0418(8)$ $0.0638(10)$ $-0.0142(6)$ $0.0141(7)$ $-0.0275(7)$ O5 $0.0423(8)$ $0.0452(8)$ $0.0665(10)$ $-0.0205(7)$ $-0.0061(7)$ $-0.0194(10)$	C11	0.0435 (12)	0.0431 (12)	0.0543 (13)	-0.0127 (9)	-0.0129 (10)	-0.0092 (10)
C13 $0.0331 (10)$ $0.0434 (11)$ $0.0434 (11)$ $-0.0174 (9)$ $0.0033 (8)$ $-0.0188 (9)$ C14 $0.0380 (11)$ $0.0407 (11)$ $0.0451 (12)$ $-0.0137 (9)$ $-0.0067 (9)$ $-0.0099 (9)$ C15 $0.0345 (10)$ $0.0483 (12)$ $0.0445 (12)$ $-0.0159 (9)$ $-0.0065 (9)$ $-0.0149 (9)$ C16 $0.0504 (13)$ $0.0597 (15)$ $0.0775 (17)$ $-0.0275 (11)$ $0.0240 (12)$ $-0.0411 (9)$ C17 $0.0688 (16)$ $0.0355 (12)$ $0.0774 (17)$ $-0.0156 (11)$ $-0.0080 (13)$ $-0.0253 (12)$ C18 $0.0598 (14)$ $0.0489 (13)$ $0.0766 (18)$ $-0.0280 (11)$ $-0.0104 (13)$ $-0.0148 (10)$ O1 $0.0452 (9)$ $0.0401 (8)$ $0.0895 (13)$ $-0.0177 (7)$ $0.0184 (8)$ $-0.0344 (10)$ O2 $0.0397 (8)$ $0.0420 (8)$ $0.0658 (10)$ $-0.0188 (6)$ $0.0165 (7)$ $-0.0305 (10)$ O3 $0.0555 (9)$ $0.0361 (8)$ $0.0683 (10)$ $-0.0142 (6)$ $0.0141 (7)$ $-0.0225 (10)$ O4 $0.0408 (8)$ $0.0418 (8)$ $0.0665 (10)$ $-0.0205 (7)$ $-0.0061 (7)$ $-0.0194 (10)$	C12	0.0380 (11)	0.0512 (13)	0.0626 (14)	-0.0154 (10)	-0.0136 (10)	-0.0180 (11)
C14 $0.0380(11)$ $0.0407(11)$ $0.0451(12)$ $-0.0137(9)$ $-0.0067(9)$ $-0.0099(0)$ C15 $0.0345(10)$ $0.0483(12)$ $0.0445(12)$ $-0.0159(9)$ $-0.0065(9)$ $-0.0149(0)$ C16 $0.0504(13)$ $0.0597(15)$ $0.0775(17)$ $-0.0275(11)$ $0.0240(12)$ $-0.0411(0)$ C17 $0.0688(16)$ $0.0355(12)$ $0.0774(17)$ $-0.0156(11)$ $-0.0080(13)$ $-0.0253(0)$ C18 $0.0598(14)$ $0.0489(13)$ $0.0766(18)$ $-0.0280(11)$ $-0.0104(13)$ $-0.0148(0)$ O1 $0.0452(9)$ $0.0401(8)$ $0.0895(13)$ $-0.0177(7)$ $0.0184(8)$ $-0.0344(0)$ O2 $0.0397(8)$ $0.0420(8)$ $0.0658(10)$ $-0.0195(7)$ $-0.0031(7)$ $-0.0225(0)$ O3 $0.0555(9)$ $0.0361(8)$ $0.0638(10)$ $-0.0142(6)$ $0.0141(7)$ $-0.0275(0)$ O4 $0.0408(8)$ $0.0452(8)$ $0.0665(10)$ $-0.0205(7)$ $-0.0061(7)$ $-0.0194(0)$	C13	0.0331 (10)	0.0434 (11)	0.0434 (11)	-0.0174 (9)	0.0033 (8)	-0.0188 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.0380 (11)	0.0407 (11)	0.0451 (12)	-0.0137 (9)	-0.0067 (9)	-0.0099 (9)
C16 $0.0504(13)$ $0.0597(15)$ $0.0775(17)$ $-0.0275(11)$ $0.0240(12)$ $-0.0411(1)$ C17 $0.0688(16)$ $0.0355(12)$ $0.0774(17)$ $-0.0156(11)$ $-0.0080(13)$ $-0.0253(12)$ C18 $0.0598(14)$ $0.0489(13)$ $0.0766(18)$ $-0.0280(11)$ $-0.0104(13)$ $-0.0148(13)$ O1 $0.0452(9)$ $0.0401(8)$ $0.0895(13)$ $-0.0177(7)$ $0.0184(8)$ $-0.0344(10)$ O2 $0.0397(8)$ $0.0420(8)$ $0.0658(10)$ $-0.0195(7)$ $-0.0031(7)$ $-0.0225(7)$ O3 $0.0555(9)$ $0.0361(8)$ $0.0638(10)$ $-0.0142(6)$ $0.0141(7)$ $-0.0275(10)$ O4 $0.0408(8)$ $0.0452(8)$ $0.0665(10)$ $-0.0205(7)$ $-0.0061(7)$ $-0.0194(10)$	C15	0.0345 (10)	0.0483 (12)	0.0445 (12)	-0.0159 (9)	-0.0065 (9)	-0.0149 (10)
C17 $0.0688(16)$ $0.0355(12)$ $0.0774(17)$ $-0.0156(11)$ $-0.0080(13)$ $-0.0253(12)$ C18 $0.0598(14)$ $0.0489(13)$ $0.0766(18)$ $-0.0280(11)$ $-0.0104(13)$ $-0.0148(10)$ O1 $0.0452(9)$ $0.0401(8)$ $0.0895(13)$ $-0.0177(7)$ $0.0184(8)$ $-0.0344(10)$ O2 $0.0397(8)$ $0.0420(8)$ $0.0658(10)$ $-0.0188(6)$ $0.0165(7)$ $-0.0305(10)$ O3 $0.0555(9)$ $0.0361(8)$ $0.0683(10)$ $-0.0142(6)$ $0.0141(7)$ $-0.0225(7)$ O4 $0.0408(8)$ $0.0452(8)$ $0.0665(10)$ $-0.0205(7)$ $-0.0061(7)$ $-0.0194(10)$	C16	0.0504 (13)	0.0597 (15)	0.0775 (17)	-0.0275 (11)	0.0240 (12)	-0.0411 (13)
C18 0.0598 (14) 0.0489 (13) 0.0766 (18) -0.0280 (11) -0.0104 (13) -0.0148 (000000000000000000000000000000000000	C17	0.0688 (16)	0.0355 (12)	0.0774 (17)	-0.0156 (11)	-0.0080 (13)	-0.0253 (12)
O1 0.0452 (9) 0.0401 (8) 0.0895 (13) -0.0177 (7) 0.0184 (8) -0.0344 (9) O2 0.0397 (8) 0.0420 (8) 0.0658 (10) -0.0188 (6) 0.0165 (7) -0.0305 (9) O3 0.0555 (9) 0.0361 (8) 0.0638 (10) -0.0195 (7) -0.0031 (7) -0.0225 (9) O4 0.0408 (8) 0.0418 (8) 0.0638 (10) -0.0142 (6) 0.0141 (7) -0.0275 (7) O5 0.0423 (8) 0.0452 (8) 0.0665 (10) -0.0205 (7) -0.0061 (7) -0.0194 (7)	C18	0.0598 (14)	0.0489 (13)	0.0766 (18)	-0.0280 (11)	-0.0104 (13)	-0.0148 (12)
O2 0.0397 (8) 0.0420 (8) 0.0658 (10) -0.0188 (6) 0.0165 (7) -0.0305 (7) O3 0.0555 (9) 0.0361 (8) 0.0683 (10) -0.0195 (7) -0.0031 (7) -0.0225 (7) O4 0.0408 (8) 0.0418 (8) 0.0638 (10) -0.0142 (6) 0.0141 (7) -0.0275 (7) O5 0.0423 (8) 0.0452 (8) 0.0665 (10) -0.0205 (7) -0.0061 (7) -0.0194 (7)	O1	0.0452 (9)	0.0401 (8)	0.0895 (13)	-0.0177 (7)	0.0184 (8)	-0.0344 (8)
O3 0.0555 (9) 0.0361 (8) 0.0683 (10) -0.0195 (7) -0.0031 (7) -0.0225 (7) O4 0.0408 (8) 0.0418 (8) 0.0638 (10) -0.0142 (6) 0.0141 (7) -0.0275 (7) O5 0.0423 (8) 0.0452 (8) 0.0665 (10) -0.0205 (7) -0.0061 (7) -0.0194 (7)	O2	0.0397 (8)	0.0420 (8)	0.0658 (10)	-0.0188 (6)	0.0165 (7)	-0.0305 (7)
O4 0.0408 (8) 0.0418 (8) 0.0638 (10) -0.0142 (6) 0.0141 (7) -0.0275 (7) O5 0.0423 (8) 0.0452 (8) 0.0665 (10) -0.0205 (7) -0.0061 (7) -0.0194 (7)	O3	0.0555 (9)	0.0361 (8)	0.0683 (10)	-0.0195 (7)	-0.0031 (7)	-0.0225 (7)
O5 0.0423 (8) 0.0452 (8) 0.0665 (10) -0.0205 (7) -0.0061 (7) -0.0194 (O4	0.0408 (8)	0.0418 (8)	0.0638 (10)	-0.0142 (6)	0.0141 (7)	-0.0275 (7)
	O5	0.0423 (8)	0.0452 (8)	0.0665 (10)	-0.0205 (7)	-0.0061 (7)	-0.0194 (8)

Geometric parameters (Å, °)

C1—O1	1.222 (2)	C11—H11	0.9300
C1—C2	1.471 (3)	C12—C13	1.378 (3)
C1—C9	1.478 (3)	C12—H12	0.9300
C2—C7	1.393 (2)	C13—O5	1.379 (2)
C2—C3	1.427 (3)	C13—C14	1.380 (3)
C3—O2	1.355 (2)	C14—C15	1.390 (3)
C3—C4	1.373 (3)	C14—H14	0.9300
C4—C5	1.397 (3)	C15—H15	0.9300
C4—H4	0.9300	C16—O2	1.433 (3)
C5—O3	1.357 (2)	C16—H16A	0.9600
C5—C6	1.372 (3)	С16—Н16В	0.9600
C6—C7	1.386 (3)	C16—H16C	0.9600
С6—Н6	0.9300	C17—O3	1.430 (2)
C7—O4	1.374 (2)	С17—Н17А	0.9600
C8—C9	1.332 (3)	С17—Н17В	0.9600
C8—O4	1.358 (2)	С17—Н17С	0.9600
С8—Н8	0.9300	C18—O5	1.419 (3)
C9—C10	1.486 (3)	C18—H18A	0.9600
C10-C15	1.380 (3)	C18—H18B	0.9600
C10-C11	1.390 (3)	C18—H18C	0.9600
C11—C12	1.382 (3)		
O1—C1—C2	124.71 (17)	C13—C12—H12	120.0
O1—C1—C9	121.14 (18)	C11—C12—H12	120.0
C2—C1—C9	114.15 (15)	C12—C13—O5	116.05 (17)

C7—C2—C3	115.23 (17)	C12—C13—C14	119.94 (18)
C7—C2—C1	120.16 (17)	O5-C13-C14	124.01 (18)
C3—C2—C1	124.60 (16)	C13—C14—C15	119.33 (18)
O2—C3—C4	123.17 (18)	C13—C14—H14	120.3
O2—C3—C2	115.90 (16)	C15—C14—H14	120.3
C4—C3—C2	120.91 (17)	C10-C15-C14	121.74 (18)
C3—C4—C5	120.67 (18)	C10-C15-H15	119.1
C3—C4—H4	119.7	C14—C15—H15	119.1
C5—C4—H4	119.7	O2-C16-H16A	109.5
O3—C5—C6	124.45 (17)	O2-C16-H16B	109.5
O3—C5—C4	114.90 (18)	H16A—C16—H16B	109.5
C6—C5—C4	120.63 (18)	O2—C16—H16C	109.5
C5—C6—C7	117.72 (17)	H16A—C16—H16C	109.5
С5—С6—Н6	121.1	H16B—C16—H16C	109.5
С7—С6—Н6	121.1	O3—C17—H17A	109.5
O4—C7—C6	113.70 (16)	O3—C17—H17B	109.5
O4—C7—C2	121.58 (17)	H17A—C17—H17B	109.5
C6—C7—C2	124.72 (18)	O3—C17—H17C	109.5
C9—C8—O4	125.33 (18)	H17A—C17—H17C	109.5
С9—С8—Н8	117.3	H17B—C17—H17C	109.5
O4—C8—H8	117.3	O5-C18-H18A	109.5
C8—C9—C1	119.66 (18)	O5—C18—H18B	109.5
C8—C9—C10	118.99 (17)	H18A—C18—H18B	109.5
C1—C9—C10	121.35 (16)	O5—C18—H18C	109.5
C15—C10—C11	117.72 (18)	H18A—C18—H18C	109.5
C15—C10—C9	121.51 (17)	H18B—C18—H18C	109.5
C11—C10—C9	120.74 (18)	C3—O2—C16	117.51 (16)
C12—C11—C10	121.22 (19)	C5—O3—C17	117.94 (17)
C12—C11—H11	119.4	C8—O4—C7	118.44 (14)
C10—C11—H11	119.4	C13—O5—C18	118.07 (16)
C13—C12—C11	120.04 (19)		
O1—C1—C2—C7	171.3 (2)	C2-C1-C9-C10	-172.17 (16)
C9—C1—C2—C7	-8.5 (3)	C8—C9—C10—C15	124.8 (2)
O1—C1—C2—C3	-9.5 (3)	C1—C9—C10—C15	-54.9 (3)
C9—C1—C2—C3	170.60 (17)	C8—C9—C10—C11	-53.1 (3)
C7—C2—C3—O2	174.17 (16)	C1—C9—C10—C11	127.1 (2)
C1—C2—C3—O2	-5.0 (3)	C15-C10-C11-C12	0.5 (3)
C7—C2—C3—C4	-4.1 (3)	C9—C10—C11—C12	178.5 (2)
C1—C2—C3—C4	176.71 (18)	C10-C11-C12-C13	-0.8 (3)
O2—C3—C4—C5	-176.06 (18)	C11—C12—C13—O5	-179.94 (19)
C2—C3—C4—C5	2.1 (3)	C11—C12—C13—C14	0.1 (3)
C3—C4—C5—O3	179.07 (17)	C12-C13-C14-C15	0.9 (3)
C3—C4—C5—C6	0.6 (3)	O5-C13-C14-C15	-179.00 (18)
O3—C5—C6—C7	-179.33 (18)	C11—C10—C15—C14	0.6 (3)
C4—C5—C6—C7	-1.0 (3)	C9—C10—C15—C14	-177.37 (18)
C5—C6—C7—O4	178.55 (17)	C13—C14—C15—C10	-1.3 (3)
C5—C6—C7—C2	-1.3 (3)	C4—C3—O2—C16	10.6 (3)
C3—C2—C7—O4	-176.04 (16)	C2—C3—O2—C16	-167.67 (19)
C1—C2—C7—O4	3.2 (3)	C6—C5—O3—C17	-0.2 (3)

supplementary materials

C3—C2—C7—C6	3.8 (3)	C4—C5—O3—C17	-178.62 (18)
C1—C2—C7—C6	-176.97 (17)	C9—C8—O4—C7	-3.9 (3)
O4—C8—C9—C1	-2.2 (3)	C6—C7—O4—C8	-176.59 (18)
O4—C8—C9—C10	178.07 (19)	C2—C7—O4—C8	3.3 (3)
O1—C1—C9—C8	-171.8 (2)	C12-C13-O5-C18	172.12 (19)
C2—C1—C9—C8	8.1 (3)	C14-C13-O5-C18	-7.9 (3)
O1—C1—C9—C10	8.0 (3)		

